Chaotically spiking canards in an excitable system with 2D inertial fast manifolds.
نویسندگان
چکیده
We introduce a new class of excitable systems with two-dimensional fast dynamics that includes inertia. A novel transition from excitability to relaxation oscillations is discovered where the usual Hopf bifurcation is followed by a cascade of period doubled and chaotic small excitable attractors and, as they grow, by a new type of canard explosion where a small chaotic background erratically but deterministically triggers excitable spikes. This scenario is also found in a model for a nonlinear Fabry-Perot cavity with one pendular mirror.
منابع مشابه
Excitable Neurons, Firing Threshold Manifolds and Canards
We investigate firing threshold manifolds in a mathematical model of an excitable neuron. The model analyzed investigates the phenomenon of post-inhibitory rebound spiking due to propofol anesthesia and is adapted from McCarthy et al. (SIAM J. Appl. Dyn. Syst. 11(4):1674-1697, 2012). Propofol modulates the decay time-scale of an inhibitory GABAa synaptic current. Interestingly, this system give...
متن کاملChaos in 2d Slow-fast Maps for Spiking-bursting Neural Activity
Origin of chaos in a simple slow-fast 2D map replicating the spiking and spiking-bursting activity of real biological neurons is studied. The map contains one fast and one slow variable. We study the bifurcation scenarios which reveal the dynamical mechanisms that lead to chaos through canards in alternation of silence and spiking phases.
متن کاملA showcase of torus canards in neuronal bursters
Rapid action potential generation - spiking - and alternating intervals of spiking and quiescence - bursting - are two dynamic patterns commonly observed in neuronal activity. In computational models of neuronal systems, the transition from spiking to bursting often exhibits complex bifurcation structure. One type of transition involves the torus canard, which we show arises in a broad array of...
متن کاملThe Geometry of Slow Manifolds near a Folded Node
This paper is concerned with the geometry of slow manifolds of a dynamical system with two slow and one fast variable. Specifically, we study the dynamics near a folded node singularity, which is known to give rise to so-called canard solutions. Geometrically, canards are intersection curves of two-dimensional attracting and repelling slow manifolds, and they are a key element of slow-fast dyna...
متن کاملNew dynamics in cerebellar Purkinje cells: torus canards.
We describe a transition from bursting to rapid spiking in a reduced mathematical model of a cerebellar Purkinje cell. We perform a slow-fast analysis of the system and find that-after a saddle node bifurcation of limit cycles-the full model dynamics temporarily follow a repelling branch of limit cycles. We propose that the system exhibits a dynamical phenomenon new to realistic, biophysical ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 98 7 شماره
صفحات -
تاریخ انتشار 2007